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Getting Started with Fixed Point

• “Create Fixed-Point Data in MATLAB” on page 1-2
• “Fixed-Point Data Types” on page 1-5
• “Perform Fixed-Point Arithmetic” on page 1-7
• “Perform Fixed-Point Arithmetic” on page 1-18
• “Accelerate Fixed-Point Simulation” on page 1-27
• “Generate Fixed-Point C Code” on page 1-30
• “Manually Convert a Floating-Point MATLAB Algorithm to Fixed Point” on page 1-32
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Create Fixed-Point Data in MATLAB
The following examples show how to create fixed-point data using the Fixed-Point
Designer fi object.

Example 1.1. Create a fixed-point number with default properties

Calling fi on a number produces a fixed-point number with default signedness and
default word and fraction lengths.

 fi(pi)

ans =
 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

Example 1.2. Create a fixed-point number with specified signedness, word
length, and fraction length

You can specify the signedness (1 for signed, 0 for unsigned) and the word and fraction
lengths.

fi(pi,1,15,12)

ans =
 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 15
        FractionLength: 12

The fi and numerictype Objects

You can use the fi constructor to assign a fixed-point data type to a number or variable.
Within the fi constructor, you can specify numerictype and fimath properties. There
are two ways to create a fi object:

1 Getting Started with Fixed Point
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• At the MATLAB® command line using fi.
• Using a user interface. For more information on this second approach, see “Building fi

Object Constructors in a GUI” in “Types of fi Constructors”.

Each fi object has an associated numerictype object. The numerictype object stores
information about the fi object including word length, fraction length, and signedness.
numerictype properties can be specified in the fi constructor, or assigned to a fi
object later.

The numerictype object in MATLAB is equivalent to thefixdt object in Simulink®.

For more information on the properties of numerictype objects see “numerictype Object
Properties”.

Example 1.3. Create fixed-point integer values

To create fixed-point integer values, specify a fraction length of 0.

fi(1:25,0,8,0)

ans =
 
  Columns 1 through 13
     1   2   3   4   5   6   7   8   9  10  11  12  13
  Columns 14 through 25
    14  15  16  17  18  19  20  21  22  23  24  25

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
        FractionLength: 0

Example 1.4. Create an array of random fixed-point values

fi(rand(4),0,12,8)

ans =
 
    0.1484    0.8125    0.1953    0.3516
    0.2578    0.2422    0.2500    0.8320
    0.8398    0.9297    0.6172    0.5859
    0.2539    0.3516    0.4727    0.5508

          DataTypeMode: Fixed-point: binary point scaling

 Create Fixed-Point Data in MATLAB
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            Signedness: Unsigned
            WordLength: 12
        FractionLength: 8

Example 1.5. Create an array of zeros

When writing code, you sometimes want to test different data types for your variables.
Separating the data types of your variables from your algorithm makes testing much
simpler. By creating a table of data type definitions, you can programmatically toggle your
function between floating point and fixed point data types. The following example shows
how to use this technique and create an array of zeros.

 T.z = fi([],1,16,0);

z = zeros(2,3,'like',T.z)

z = 

     0     0     0
     0     0     0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 0

Note For a full example showing this technique’s implementation, see “Implement FIR
Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”.

1 Getting Started with Fixed Point
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Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a fixed-length
sequence of bits (1's and 0's). How hardware components or software functions interpret
this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. This
chapter discusses many terms and concepts relating to fixed-point numbers, data types,
and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the
binary point, and whether it is signed or unsigned. The position of the binary point is the
means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed
or unsigned) is shown below:

bwl 1 bwl 2 b5 b3b4 b2 b1 b0

where

• bi is the ith binary digit.
• wl is the word length in bits.
• bwl-1 is the location of the most significant, or highest, bit (MSB).
• b0 is the location of the least significant, or lowest, bit (LSB).
• The binary point is shown four places to the left of the LSB. In this example, therefore,

the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point
numbers are typically represented in one of three ways:

• Sign/magnitude
• One's complement
• Two's complement

 Fixed-Point Data Types
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Two's complement is the most common representation of signed fixed-point numbers and
is the only representation used by Fixed-Point Designer documentation.
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Perform Fixed-Point Arithmetic
In this section...
“Fixed-Point Arithmetic” on page 1-7
“The fimath Object” on page 1-10
“Bit Growth” on page 1-11
“Controlling Bit Growth” on page 1-12
“Overflows and Rounding” on page 1-16

Fixed-Point Arithmetic
Addition and subtraction

Whenever you add two fixed-point numbers, you may need a carry bit to correctly
represent the result. For this reason, when adding two B-bit numbers (with the same
scaling), the resulting value has an extra bit compared to the two operands used.

a = fi(0.234375,0,4,6);
c = a+a

c = 

    0.4688

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 5
        FractionLength: 6

a.bin

ans =

1111

c.bin

ans =

11110

 Perform Fixed-Point Arithmetic
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If you add or subtract two numbers with different precision, the radix point first needs to
be aligned to perform the operation. The result is that there is a difference of more than
one bit between the result of the operation and the operands.

a = fi(pi,1,16,13);
b = fi(0.1,1,12,14);
c = a + b

c = 

    3.2416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Multiplication

In general, a full precision product requires a word length equal to the sum of the word
length of the operands. In the following example, note that the word length of the product
c is equal to the word length of a plus the word length of b. The fraction length of c is
also equal to the fraction length of a plus the fraction length of b.

a = fi(pi,1,20), b = fi(exp(1),1,16)

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 20
        FractionLength: 17

b = 

    2.7183

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

c = a*b

1 Getting Started with Fixed Point
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c = 

    8.5397

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 30

Math with other built in data types

Note that in C, the result of an operation between an integer data type and a double data
type promotes to a double. However, in MATLAB, the result of an operation between a
built-in integer data type and a double data type is an integer. In this respect, the fi
object behaves like the built-in integer data types in MATLAB.

When doing addition between fi and double, the double is cast to a fi with the same
numerictype as the fi input. The result of the operation is a fi. When doing
multiplication between fi and double, the double is cast to a fi with the same word
length and signedness of the fi, and best precision fraction length. The result of the
operation is a fi.

a = fi(pi);

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

b = 0.5 * a

b = 

    1.5708

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 28

 Perform Fixed-Point Arithmetic
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When doing arithmetic between a fi and one of the built-in integer data types,
[u]int[8, 16, 32], the word length and signedness of the integer are preserved. The
result of the operation is a fi.

a = fi(pi);
b = int8(2) * a

b = 

    6.2832

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 13

When doing arithmetic between a fi and a logical data type, the logical is treated as an
unsigned fi object with a value of 0 or 1, and word length 1. The result of the operation
is a fi object.

a = fi(pi);
b = logical(1);
c = a*b

c = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 17
        FractionLength: 13

The fimath Object
fimath properties define the rules for performing arithmetic operations on fi objects,
including math, rounding, and overflow properties. A fi object can have a local fimath
object, or it can use the default fimath properties. You can attach a fimath object to a
fi object by using setfimath. Alternatively, you can specify fimath properties in the fi
constructor at creation. When a fi object has a local fimath , rather than using the
default properties, the display of the fi object shows the fimath properties. In this
example, a has the ProductMode property specified in the constructor.

 a = fi(5,1,16,4,'ProductMode','KeepMSB')

1 Getting Started with Fixed Point
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a = 

     5

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 4

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: KeepMSB
     ProductWordLength: 32
               SumMode: FullPrecision

The ProductMode property of a is set to KeepMSB while the remaining fimath
properties use the default values.

Note For more information on the fimath object, its properties, and their default values,
see “fimath Object Properties”.

Bit Growth
The following table shows the bit growth of fi objects, A and B, when their SumMode and
ProductMode properties use the default fimath value, FullPrecision.

 A B Sum = A+B Prod = A*B

Format fi(vA,s1,w1,
f1)

fi(vB,s2,w2,f2
)

— —

Sign s1 s2 Ssum = (s1||s2) Sproduct = (s1||s2)

Integer bits
I1 = w1-f1-s1 I2= w2-f2-s2 Isum = max(w1-f1,

w2-f2) + 1 - Ssum
Iproduct = (w1 +
w2) - (f1 +
f2)

Fraction bits f1 f2 Fsum = max(f1, f2) Fproduct = f1 +
f2

Total bits w1 w2 Ssum + Isum + Fsum w1 + w2

This example shows how bit growth can occur in a for-loop.

 Perform Fixed-Point Arithmetic
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T.acc = fi([],1,32,0);
T.x = fi([],1,16,0);

x = cast(1:3,'like',T.x);
acc = zeros(1,1,'like',T.acc);

for n = 1:length(x)
    acc = acc + x(n)
end

acc = 

     1
      s33,0

acc = 

     3
      s34,0

acc = 

     6
      s35,0

The word length of acc increases with each iteration of the loop. This increase causes
two problems: One is that code generation does not allow changing data types in a loop.
The other is that, if the loop is long enough, you run out of memory in MATLAB. See
“Controlling Bit Growth” on page 1-12 for some strategies to avoid this problem.

Controlling Bit Growth
Using fimath

By specifying the fimath properties of a fi object, you can control the bit growth as
operations are performed on the object.

F = fimath('SumMode', 'SpecifyPrecision', 'SumWordLength', 8,...
 'SumFractionLength', 0);
a = fi(8,1,8,0, F);
b = fi(3, 1, 8, 0);
c = a+b

c = 

1 Getting Started with Fixed Point
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    11

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 0

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: SpecifyPrecision
         SumWordLength: 8
     SumFractionLength: 0
         CastBeforeSum: true

The fi object a has a local fimath object F. F specifies the word length and fraction
length of the sum. Under the default fimath settings, the output, c, normally has word
length 9, and fraction length 0. However because a had a local fimath object, the
resulting fi object has word length 8 and fraction length 0.

You can also use fimath properties to control bit growth in a for-loop.

F = fimath('SumMode', 'SpecifyPrecision','SumWordLength',32,...
'SumFractionLength',0);
T.acc = fi([],1,32,0,F);
T.x = fi([],1,16,0);

x = cast(1:3,'like',T.x);
acc = zeros(1,1,'like',T.acc);

for n = 1:length(x)
    acc = acc + x(n)
end

acc = 

     1
      s32,0

acc = 

     3
      s32,0

acc = 

 Perform Fixed-Point Arithmetic
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     6
      s32,0

Unlike when T.acc was using the default fimath properties, the bit growth of acc is
now restricted. Thus, the word length of acc stays at 32.

Subscripted Assignment

Another way to control bit growth is by using subscripted assignment. a(I) = b assigns
the values of b into the elements of a specified by the subscript vector, I, while retaining
the numerictype of a.

T.acc = fi([],1,32,0);
T.x = fi([],1,16,0);

x = cast(1:3,'like',T.x);
acc = zeros(1,1,'like',T.acc);

% Assign in to acc without changing its type
for n = 1:length(x)
    acc(:) = acc + x(n)
end

acc (:) = acc + x(n) dictates that the values at subscript vector, (:), change. However,
the numerictype of output acc remains the same. Because acc is a scalar, you also
receive the same output if you use (1) as the subscript vector.

  for n = 1:numel(x)
    acc(1) = acc + x(n);
  end

acc = 

     1
      s32,0

acc = 

     3
      s32,0

acc = 
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     6
      s32,0

The numerictype of acc remains the same at each iteration of the for-loop.

Subscripted assignment can also help you control bit growth in a function. In the
function, cumulative_sum, the numerictype of y does not change, but the values in
the elements specified by n do.

function y = cumulative_sum(x)
% CUMULATIVE_SUM Cumulative sum of elements of a vector.
%
%   For vectors, Y = cumulative_sum(X) is a vector containing the
%   cumulative sum of the elements of X.  The type of Y is the type of X.
    y = zeros(size(x),'like',x);
    y(1) = x(1);
    for n = 2:length(x)
        y(n) = y(n-1) + x(n);
    end
end

y = cumulative_sum(fi([1:10],1,8,0))

y = 

     1     3     6    10    15    21    28    36    45    55

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 0

Note For more information on subscripted assignment, see the subsasgn function.

accumpos and accumneg

Another way you can control bit growth is by using the accumpos and accumneg
functions to perform addition and subtraction operations. Similar to using subscripted
assignment, accumpos and accumneg preserve the data type of one of its input fi
objects while allowing you to specify a rounding method, and overflow action in the input
values.
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For more information on how to implement accumpos and accumneg, see “Avoid
Multiword Operations in Generated Code”

Overflows and Rounding
When performing fixed-point arithmetic, consider the possibility and consequences of
overflow. The fimath object specifies the overflow and rounding modes used when
performing arithmetic operations.

Overflows

Overflows can occur when the result of an operation exceeds the maximum or minimum
representable value. The fimath object has an OverflowAction property which offers
two ways of dealing with overflows: saturation and wrap. If you set OverflowAction to
saturate, overflows are saturated to the maximum or minimum value in the range. If
you set OverflowAction to wrap, any overflows wrap using modulo arithmetic, if
unsigned, or two’s complement wrap, if signed.

For more information on how to detect overflow see “Underflow and Overflow Logging
Using fipref”.

Rounding

There are several factors to consider when choosing a rounding method, including cost,
bias, and whether or not there is a possibility of overflow. Fixed-Point Designer software
offers several different rounding functions to meet the requirements of your design.

Rounding
Method

Description Cost Bias Possibili
ty of
Overflow

ceil Rounds to the closest representable
number in the direction of positive
infinity.

Low Large positive Yes

convergent Rounds to the closest representable
number. In the case of a tie,
convergent rounds to the nearest
even number. This approach is the
least-biased rounding method
provided by the toolbox.

High Unbiased Yes

1 Getting Started with Fixed Point
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Rounding
Method

Description Cost Bias Possibili
ty of
Overflow

floor Rounds to the closest representable
number in the direction of negative
infinity, equivalent to two’s
complement truncation.

Low Large negative No

nearest Rounds to the closest representable
number. In the case of a tie, nearest
rounds to the closest representable
number in the direction of positive
infinity. This rounding method is the
default for fi object creation and fi
arithmetic.

Moderate Small positive Yes

round Rounds to the closest representable
number. In the case of a tie, the
round method rounds:

• Positive numbers to the closest
representable number in the
direction of positive infinity.

• Negative numbers to the closest
representable number in the
direction of negative infinity.

High • Small negative for
negative samples

• Unbiased for
samples with
evenly distributed
positive and
negative values

• Small positive for
positive samples

Yes

fix Rounds to the closest representable
number in the direction of zero.

Low • Large positive for
negative samples

• Unbiased for
samples with
evenly distributed
positive and
negative values

• Large negative for
positive samples

No
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Perform Fixed-Point Arithmetic
This example shows how to perform basic fixed-point arithmetic operations.

Save warning states before beginning.

warnstate = warning;

Addition and Subtraction

Whenever you add two unsigned fixed-point numbers, you may need a carry bit to
correctly represent the result. For this reason, when adding two B-bit numbers (with the
same scaling), the resulting value has an extra bit compared to the two operands used.

a = ufi(0.234375,4,6);
c = a + a

c = 

    0.4688

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 5
        FractionLength: 6

a.bin

ans =

    '1111'

c.bin

ans =

    '11110'

With signed, two's-complement numbers, a similar scenario occurs because of the sign
extension required to correctly represent the result.
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a = sfi(0.078125,4,6);
b = sfi(-0.125,4,6);
c = a + b

c = 

   -0.0469

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 5
        FractionLength: 6

a.bin

ans =

    '0101'

b.bin

ans =

    '1000'

c.bin

ans =

    '11101'

If you add or subtract two numbers with different precision, the radix point first needs to
be aligned to perform the operation. The result is that there is a difference of more than
one bit between the result of the operation and the operands (depending on how far apart
the radix points are).

a = sfi(pi,16,13);
b = sfi(0.1,12,14);
c = a + b
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c = 

    3.2416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Further Considerations for Addition and Subtraction

Note that the following pattern is not recommended. Since scalar additions are
performed at each iteration in the for-loop, a bit is added to temp during each iteration.
As a result, instead of a ceil(log2(Nadds)) bit-growth, the bit-growth is equal to Nadds.

s = rng; rng('default');
b = sfi(4*rand(16,1)-2,32,30);
rng(s); % restore RNG state
Nadds = length(b) - 1;
temp  = b(1);
for n = 1:Nadds
    temp = temp + b(n+1); % temp has 15 more bits than b
end

If the sum command is used instead, the bit-growth is curbed as expected.

c = sum(b) % c has 4 more bits than b

c = 

    7.0059

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 30

Multiplication

In general, a full precision product requires a word length equal to the sum of the word
lengths of the operands. In the following example, note that the word length of the
product c is equal to the word length of a plus the word length of b. The fraction length of
c is also equal to the fraction length of a plus the fraction length of b.
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a = sfi(pi,20);
b = sfi(exp(1),16);
c = a * b

c = 

    8.5397

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 30

Assignment

When you assign a fixed-point value into a pre-defined variable, quantization might be
involved. In such cases, the right-hand-side of the expression is quantized by rounding to
nearest and then saturating, if necessary, before assigning to the left-hand-side.

N = 10;
a = sfi(2*rand(N,1)-1,16,15);
b = sfi(2*rand(N,1)-1,16,15);
c = sfi(zeros(N,1),16,14);
for n = 1:N
    c(n) = a(n).*b(n);
end

Note that when the product a(n).*b(n) is computed with full precision, an intermediate
result with wordlength 32 and fraction length 30 is generated. That result is then
quantized to a wordlength of 16 and a fraction length of 14, as explained above. The
quantized value is then assigned to the element c(n).

Quantizing Results Explicitly

Often, it is not desirable to round to nearest or to saturate when quantizing a result
because of the extra logic/computation required. It also may be undesirable to have to
assign to a left-hand-side value to perform the quantization. You can use QUANTIZE for
such purposes. A common case is a feedback-loop. If no quantization is introduced, un-
bounded bit-growth will occur as more input data is provided.

a = sfi(0.1,16,18);
x = sfi(2*rand(128,1)-1,16,15);
y = sfi(zeros(size(x)),16,14);

 Perform Fixed-Point Arithmetic

1-21



for n = 1:length(x)
    z    = y(n);
    y(n) = x(n) - quantize(a.*z, true, 16, 14, 'Floor', 'Wrap');
end

In this example, the product a.*z is computed with full precision and is subsequently
quantized to a wordlength of 16 bits and a fraction length of 14. The quantization is done
by rounding to floor (truncation) and allowing for wrapping if overflow occurs.
Quantization still occurs at assignment, because the expression x(n) -
quantize(a.*z, ...) produces an intermediate result of 18 bits and y is defined to
have 16 bits. To eliminate the quantization at assignment, you can introduce an additional
explicit quantization as shown below. The advantage of doing this is that no round-to-
nearest/saturation logic is used. The left-hand-side result has the same 16-bit wordlength
and fraction length of 14 as y(n), so no quantization is necessary.

a = sfi(0.1,16,18);
x = sfi(2*rand(128,1)-1,16,15);
y = sfi(zeros(size(x)),16,14);
T = numerictype(true, 16, 14);
for n = 1:length(x)
    z    = y(n);
    y(n) = quantize(x(n), T, 'Floor', 'Wrap') - ...
           quantize(a.*z, T, 'Floor', 'Wrap');
end

Non-Full-Precision Sums

Full-precision sums are not always desirable. For example, the 18-bit wordlength
corresponding to the intermediate result x(n) - quantize(...) above may result in
complicated and inefficient code, if C code is generated. Instead, it may be desirable to
keep all results of addition/subtraction to 16 bits. You can use the accumpos and
accumneg functions for this purpose.

a = sfi(0.1,16,18);
x = sfi(2*rand(128,1)-1,16,15);
y = sfi(zeros(size(x)),16,14);
T = numerictype(true, 16, 14);
for n = 1:length(x)
    z    = y(n);
    y(n) = quantize(x(n), T);                 % defaults: 'Floor','Wrap'
    y(n) = accumneg(y(n), quantize(a.*z, T)); % defaults: 'Floor','Wrap'
end
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Modeling Accumulators

accumpos and accumneg are well-suited to model accumulators. The behavior
corresponds to the += and -= operators in C. A common example is an FIR filter in which
the coefficients and input data are represented with 16 bits. The multiplication is
performed in full-precision, yielding 32 bits, and an accumulator with 8 guard-bits, i.e. 40-
bits total is used to enable up to 256 accumulations without the possibility of overflow.

b = sfi(1/256*[1:128,128:-1:1],16); % Filter coefficients
x = sfi(2*rand(300,1)-1,16,15);     % Input data
z = sfi(zeros(256,1),16,15);        % Used to store the states
y = sfi(zeros(size(x)),40,31);      % Initialize Output data
for n = 1:length(x)
    acc = sfi(0,40,31); % Reset accumulator
    z(1) = x(n);        % Load input sample
    for k = 1:length(b)
        acc = accumpos(acc,b(k).*z(k)); % Multiply and accumulate
    end
    z(2:end) = z(1:end-1); % Update states
    y(n) = acc;            % Assign output
end

Matrix Arithmetic

To simplify syntax and shorten simulation time, you can use matrix arithmetic. For the FIR
filter example, you can replace the inner loop with an inner product.

z = sfi(zeros(256,1),16,15); % Used to store the states
y = sfi(zeros(size(x)),40,31);
for n = 1:length(x)
    z(1) = x(n);
    y(n) = b*z;
    z(2:end) = z(1:end-1);
end

The inner product b*z is performed with full precision. Because this is a matrix
operation, the bit growth is due to both the multiplication involved and the addition of the
resulting products. Therefore, the bit growth depends on the length of the operands.
Since b and z have length 256, that accounts for an 8-bit growth due to the additions.
This is why the inner product results in 32 + 8 = 40 bits (with fraction length 31). Since
this is the format y is initialized to, no quantization occurs in the assignment y(n) =
b*z.
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If you had to perform an inner product for more than 256 coefficients, the bit growth
would be more than 8 bits beyond the 32 needed for the product. If you only had a 40-bit
accumulator, you could model the behavior by either introducing a quantizer, as in y(n)
= quantize(Q,b*z), or you could use the accumpos function as has been shown.

Modeling a Counter

accumpos can be used to model a simple counter which naturally wraps after reaching its
maximum value. For example, you can model a 3-bit counter as follows.

c = ufi(0,3,0);
Ncounts = 20; % Number of times to count
for n = 1:Ncounts
    c = accumpos(c,1);
end

Since the 3-bit counter naturally wraps back to 0 after reaching 7, the final value of the
counter is mod(20,8) = 4.

Math With Other Built-In Data Types

FI * DOUBLE

When doing multiplication between fi and double, the double is cast to a fi with the
same word length and signedness of the fi, and best-precision fraction length. The result
of the operation is a fi.

a = fi(pi);
b = 0.5 * a

b = 

    1.5708

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 28

FI + DOUBLE or FI - DOUBLE

When doing addition or subtraction between fi and double, the double is cast to a fi
with the same numerictype as the fi. The result of the operation is a fi.
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This behavior of fi + double changed in R2012b. You can turn off the incompatibility
warning by entering the following warning command.

warning off fixed:incompatibility:fi:behaviorChangeHeterogeneousMathOperationRules
a = fi(pi);
b = a + 1

b = 

    4.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 17
        FractionLength: 13

Some Differences Between MATLAB® and C

Note that in C, the result of an operation between an integer data type and a double data
type promotes to a double.

However, in MATLAB, the result of an operation between a built-in integer data type and
a double data type is an integer. In this respect, the fi object behaves like the built-in
integer data types in MATLAB. The result of an operation between a fi and a double is a
fi.

FI * INT8

When doing arithmetic between fi and one of the built-in integer data types
[u]int[8,16,32], the word length and signedness of the integer are preserved. The result of
the operation is a fi.

a = fi(pi);
b = int8(2) * a

b = 

    6.2832

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 13
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Restore warning states.

warning(warnstate);
%#ok<*NASGU,*NOPTS>
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Accelerate Fixed-Point Simulation
This example shows how to accelerate fixed-point algorithms using fiaccel function.
You generate a MEX function from MATLAB® code, run the generated MEX function, and
compare the execution speed with MATLAB code simulation.

Description of the Example

This example uses a first-order feedback loop. It also uses a quantizer to avoid infinite bit
growth. The output signal is delayed by one sample and fed back to dampen the input
signal.

Copy Required File

You need this MATLAB-file to run this example. Copy it to a temporary directory. This step
requires write-permission to the system's temporary directory.

tempdirObj = fidemo.fiTempdir('fiaccelbasicsdemo');
fiacceldir = tempdirObj.tempDir;
fiaccelsrc = ...
    fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fiaccelFeedback.m');
copyfile(fiaccelsrc,fiacceldir,'f');

Inspect the MATLAB Feedback Function Code

The MATLAB function that performs the feedback loop is in the file
fiaccelFeedback.m. This code quantizes the input, and performs the feedback loop
action :
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type(fullfile(fiacceldir,'fiaccelFeedback.m'))

function [y,w] = fiaccelFeedback(x,a,y,w)
%FIACCELFEEDBACK Quantizer and feedback loop used in FIACCELBASICSDEMO.

% Copyright 1984-2013 The MathWorks, Inc.
%#codegen

for n = 1:length(x)
    y(n) =  quantize(x(n) - a*w, true, 16, 12, 'floor', 'wrap');
    w    = y(n);    
end

The following variables are used in this function:

• x is the input signal vector.
• y is the output signal vector.
• a is the feedback gain.
• w is the unit-delayed output signal.

Create the Input Signal and Initialize Variables

rng('default');                      % Random number generator
x = fi(2*rand(1000,1)-1,true,16,15); % Input signal
a = fi(.9,true,16,15);               % Feedback gain
y = fi(zeros(size(x)),true,16,12);   % Initialize output. Fraction length
                                     % is chosen to prevent overflow
w = fi(0,true,16,12);                % Initialize delayed output
A = coder.Constant(a);               % Declare "a" constant for code
                                     % generation

Run Normal Mode

tic,
y = fiaccelFeedback(x,a,y,w);
t1 = toc;

Build the MEX Version of the Feedback Code

fiaccel fiaccelFeedback -args {x,A,y,w} -o fiaccelFeedback_mex
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Run the MEX Version

tic
y2 = fiaccelFeedback_mex(x,y,w);
t2 = toc;

Acceleration Ratio

Code acceleration provides optimizations for accelerating fixed-point algorithms through
MEX file generation. Fixed-Point Designer™ provides a convenience function fiaccel to
convert your MATLAB code to a MEX function, which can greatly accelerate the execution
speed of your fixed-point algorithms.

r = t1/t2

r =

   14.1807

Clean up Temporary Files

clear fiaccelFeedback_mex;
tempdirObj.cleanUp;
%#ok<*NOPTS>
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Generate Fixed-Point C Code

Note To generate fixed-point code from MATLAB you must have both the Fixed-Point
Designer product and the MATLAB Coder™ product. You also must have a C compiler.

This example shows how to generate code for a simple function that multiples and
accumulates two input values. This is the type of code that you could embed in external
hardware. The function is

function acc = mult_acc(x,a,acc)
acc = accumpos(acc,x*a); 

This code defines the test bench inputs, sets up the required code generation properties,
and generates the code. The test bench inputs are specified as fixed-point numbers. The x
input is a random number, a is 0.9, and the accumulator, acc, is initialized to 0. The
coder.HardwareImplementation object specifies properties of the external hardware
that impact the generated code. The examples specifies a 40-bit accumulator. The
coder.CodeConfig object has properties that directly affect code generation. The
codegen command takes the function, the configuration object as the input arguments
and generates embeddable C code.

x = fi(rand,true,16,15);
a = fi(0.9,true,16,15);
acc = fi(0,true,40,30);

%% 
hi = coder.HardwareImplementation;
hi. ProdHWDeviceType = 'Generic->Custom'
hi. TargetHWDeviceType = 'Generic->Custom'
hi.TargetBitPerLong = 40;
hi.ProdBitPerLong   = 40;

hc = coder.config('lib');
hc.HardwareImplementation = hi;
hc.GenerateReport         = true;

codegen mult_acc -config hc -args {x,a,acc}

The generated C code is:
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/* Include Files */
#include "mult_acc.h"

/* Function Definitions */

/*
 * Arguments    : short x
 *                short a
 *                long *acc
 * Return Type  : void
 */
void mult_acc(short x, short a, long *acc)
{
  *acc += x * a;
}

Note For a list of functions supported for code generation, see “Functions and Objects
Supported for C/C++ Code Generation”.
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Manually Convert a Floating-Point MATLAB Algorithm to
Fixed Point

This example shows how to convert a floating-point algorithm to fixed point and then
generate C code for the algorithm. The example uses the following best practices:

• Separate your algorithm from the test file.
• Prepare your algorithm for instrumentation and code generation.
• Manage data types and control bit growth.
• Separate data type definitions from algorithmic code by creating a table of data
definitions.

For a complete list of best practices, see “Manual Fixed-Point Conversion Best Practices”.

Separate Your Algorithm From the Test File
Write a MATLAB function, mysum, that sums the elements of a vector.

function y = mysum(x)
  y = 0;
  for n = 1:length(x)
    y = y + x(n);
  end
end

Since you only need to convert the algorithmic portion to fixed-point, it is more efficient to
structure your code so that the algorithm, in which you do the core processing, is
separate from the test file.

Write a Test Script
In the test file, create your inputs, call the algorithm, and plot the results.

1 Write a MATLAB script, mysum_test, that verifies the behavior of your algorithm
using double data types.

n = 10;
rng default
x = 2*rand(n,1)-1;
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% Algorithm
y = mysum(x);

% Verify results
y_expected = sum(double(x));

err = double(y) - y_expected

rng default puts the settings of the random number generator used by the rand
function to its default value so that it produces the same random numbers as if you
restarted MATLAB.

2 Run the test script.

mysum_test

err =

     0

The results obtained using mysum match those obtained using the MATLAB sum
function.

For more information, see “Create a Test File”.

Prepare Algorithm for Instrumentation and Code Generation
In your algorithm, after the function signature, add the %#codegen compilation directive
to indicate that you intend to instrument the algorithm and generate C code for it. Adding
this directive instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during instrumentation and code generation.

function y = mysum(x) %#codegen
  y = 0;  
  for n = 1:length(x)
    y = y + x(n);
  end
end

For this algorithm, the code analyzer indicator in the top right corner of the editor
window remains green telling you that it has not detected any issues.
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For more information, see “Prepare Your Algorithm for Code Acceleration or Code
Generation”.

Generate C Code for Your Original Algorithm
Generate C code for the original algorithm to verify that the algorithm is suitable for code
generation and to see the floating-point C code. Use the codegen function (requires
MATLAB Coder) to generate a C library.

1 Add the following line to the end of your test script to generate C code for mysum.

codegen mysum -args {x} -config:lib -report
2 Run the test script again.

MATLAB Coder generates C code for mysum function and provides a link to the code
generation report.

3 Click the link to open the code generation report and view the generated C code for
mysum.

/* Function Definitions */
double mysum(const double x[10])
{
  double y;
  int n;
  y = 0.0;
  for (n = 0; n < 10; n++) {
    y += x[n];
 }
 
 return y;
 }
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Because C does not allow floating-point indices, the loop counter, n, is automatically
declared as an integer type. You do not need to convert n to fixed point.

Input x and output y are declared as double.

Manage Data Types and Control Bit Growth
Test Your Algorithm With Singles to Check for Type Mismatches

1 Modify your test file so that the data type of x is single.

n = 10;
rng default
x = single(2*rand(n,1)-1);

% Algorithm
y = mysum(x);

% Verify results
y_expected = sum(double(x));

err = double(y) - y_expected
codegen mysum -args {x} -config:lib -report

2 Run the test script again.

mysum_test

err =

  -4.4703e-08

??? This assignment writes a 'single' value into a 'double' type. Code generation
does not support changing types through assignment. Check preceding assignments or
input type specifications for type mismatches.

Code generation fails, reporting a data type mismatch on line y = y + x(n);.
3 To view the error, open the report.

In the report, on the line y = y + x(n), the report highlights the y on the left side
of the assignment in red to indicate that there is an error. The issue is that y is
declared as a double but is being assigned to a single. y + x(n) is the sum of a
double and a single which is a single. If you place your cursor over variables and
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expressions in the report, you can see information about their types. Here, you can
see that the expression, y + x(n) is a single.

4 To fix the type mismatch, update your algorithm to use subscripted assignment for
the sum of elements. Change y = y + x(n) to y(:) = y + x(n).

function y = mysum(x) %#codegen
  y = 0;
  for n = 1:length(x)
    y(:) = y + x(n);
  end
end

Using subscripted assignment, you also prevent the bit growth which is the default
behavior when you add fixed-point numbers. For more information, see “Bit Growth”
on page 1-11. Preventing bit growth is important because you want to maintain your
fixed-point types throughout your code. For more information, see “Controlling Bit
Growth” on page 1-12.

5 Regenerate C code and open the code generation report. In the C code, the result is
now cast to double to resolve the type mismatch.

Build Instrumented Mex
Use the buildInstrumentedMex function to instrument your algorithm for logging
minimum and maximum values of all named and intermediate variables. Use the
showInstrumentationResults function to propose fixed-point data types based on
these logged values. Later, you use these proposed fixed-point types to test your
algorithm.

1 Update the test script:

a After you declare n, add buildInstrumentedMex mySum —args
{zeros(n,1)} -histogram.
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b Change x back to double. Replace x = single(2*rand(n,1)-1); with x =
2*rand(n,1)-1;

c Instead of calling the original algorithm, call the generated MEX function.
Change y = mysum(x) to y=mysum_mex(x).

d After calling the MEX function, add showInstrumentationResults
mysum_mex -defaultDT numerictype(1,16) -proposeFL. The -
defaultDT numerictype(1,16) -proposeFL flags indicate that you want to
propose fraction lengths for a 16-bit word length.

Here is an updated test script.

%% Build instrumented mex
n = 10;

buildInstrumentedMex mysum -args {zeros(n,1)} -histogram

%% Test inputs
rng default
x = 2*rand(n,1)-1;

% Algorithm
y = mysum_mex(x);

% Verify results

showInstrumentationResults mysum_mex ...
  -defaultDT numerictype(1,16) -proposeFL
y_expected = sum(double(x));

err = double(y) - y_expected

%% Generate C code

codegen mysum -args {x} -config:lib -report
2 Run the test script again.

The showInstrumentationResults function proposes data types and opens a
report to display the results.

3 In the report, click the Variables tab. showInstrumentationResults proposes a
fraction length of 13 for y and 15 for x.
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In the report, you can:

• View the simulation minimum and maximum values for the input x and output y.
• View the proposed data types for x and y.
• View information for all variables, intermediate results, and expressions in your code.

To view this information, place your cursor over the variable or expression in the
report.

• View the histogram data for x and y to help you identify any values that are outside
range or below precision based on the current data type.

To view the histogram for a particular variable, click its histogram icon, .

Separate Data Type Definitions From Algorithmic Code
Rather than manually modifying the algorithm to examine the behavior for each data
type, separate the data type definitions from the algorithm.

Modify mysum so that it takes an input parameter, T, which is a structure that defines the
data types of the input and output data. When y is first defined, use the cast function like
syntax — cast(x,'like',y) — to cast x to the desired data type.

function y = mysum(x,T) %#codegen
  y = cast(0,'like',T.y);
  for n = 1:length(x)
    y(:) = y + x(n);
  end
end

Create a Table of Data Type Definitions
Write a function, mytypes, that defines the different data types that you want to use to
test your algorithm. In your data types table, include double, single, and scaled double
data types as well as the fixed-point data types proposed earlier. Before converting your
algorithm to fixed point, it is good practice to:
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• Test the connection between the data type definition table and your algorithm using
doubles.

• Test the algorithm with singles to find data type mismatches and other problems.
• Run the algorithm using scaled doubles to check for overflows.

function T = mytypes(dt)
  switch dt
    case 'double'
      T.x = double([]);
      T.y = double([]);
    case 'single'
      T.x = single([]);
      T.y = single([]);
    case 'fixed'
      T.x = fi([],true,16,15);
      T.y = fi([],true,16,13);
    case 'scaled'
      T.x = fi([],true,16,15,...
           'DataType','ScaledDouble');
      T.y = fi([],true,16,13,...
           'DataType','ScaledDouble');
  end
end

For more information, see “Separate Data Type Definitions from Algorithm”.

Update Test Script to Use Types Table
Update the test script, mysum_test, to use the types table.

1 For the first run, check the connection between table and algorithm using doubles.
Before you declare n, add T = mytypes('double');

2 Update the call to buildInstrumentedMex to use the type of T.x specified in the
data types table: buildInstrumentedMex mysum -args
{zeros(n,1,'like',T.x),T} -histogram

3 Cast x to use the type of T.x specified in the table: x =
cast(2*rand(n,1)-1,'like',T.x);

4 Call the MEX function passing in T: y = mysum_mex(x,T);
5 Call codegen passing in T: codegen mysum -args {x,T} -config:lib -

report
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Here is the updated test script.

%% Build instrumented mex
T = mytypes('double');

n = 10;

buildInstrumentedMex mysum ...
    -args {zeros(n,1,'like',T.x),T} -histogram

%% Test inputs
rng default
x = cast(2*rand(n,1)-1,'like',T.x);

% Algorithm
y = mysum_mex(x,T);

% Verify results

showInstrumentationResults mysum_mex ...
    -defaultDT numerictype(1,16) -proposeFL

y_expected = sum(double(x));

err = double(y) - y_expected

%% Generate C code

codegen mysum -args {x,T} -config:lib -report
6 Run the test script and click the link to open the code generation report.

The generated C code is the same as the code generated for the original algorithm.
Because the variable T is used to specify the types and these types are constant at
code generation time; T is not used at run time and does not appear in the generated
code.

Generate Fixed-Point Code
Update the test script to use the fixed-point types proposed earlier and view the
generated C code.

1 Update the test script to use fixed-point types. Replace T = mytypes('double');
with T = mytypes('fixed'); and then save the script.
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2 Run the test script and view the generated C code.

This version of C code is not very efficient; it contains a lot of overflow handling. The
next step is to optimize the data types to avoid overflows.

Optimize Data Types
Use Scaled Doubles to Detect Overflow

Scaled doubles are a hybrid between floating-point and fixed-point numbers. Fixed-Point
Designer stores them as doubles with the scaling, sign, and word length information
retained. Because all the arithmetic is performed in double-precision, you can see any
overflows that occur.

1 Update the test script to use scaled doubles. Replace T = mytypes('fixed');
with T = mytypes('scaled');

2 Run the test script again.

The test runs using scaled doubles and displays the report. No overflows are
detected.

So far, you’ve run the test script using random inputs which means that it is unlikely
that the test has exercised the full operating range of the algorithm.

3 Find the full range of the input.

range(T.x)

-1.000000000000000   0.999969482421875

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

4 Update the script to test the negative edge case. Run mysum_mex with the original
random input and with an input that tests the full range and aggregate the results.

%% Build instrumented mex
T = mytypes('scaled');
n = 10;

buildInstrumentedMex mysum ...
    -args {zeros(n,1,'like',T.x),T} -histogram

 Manually Convert a Floating-Point MATLAB Algorithm to Fixed Point

1-41



%% Test inputs
rng default
x = cast(2*rand(n,1)-1,'like',T.x);
y = mysum_mex(x,T);
 % Run once with this set of inputs
y_expected = sum(double(x));
err = double(y) - y_expected

% Run again with this set of inputs. The logs will aggregate.
x = -ones(n,1,'like',T.x);
y = mysum_mex(x,T); 
y_expected = sum(double(x));
err = double(y) - y_expected 

% Verify results

showInstrumentationResults mysum_mex ...
    -defaultDT numerictype(1,16) -proposeFL

y_expected = sum(double(x));

err = double(y) - y_expected

%% Generate C code

codegen mysum -args {x,T} -config:lib -report

5 Run the test script again.

The test runs and y overflows the range of the fixed-point data type.
showInstrumentationResults proposes a new fraction length of 11 for y.

6 Update the test script to use scaled doubles with the new proposed type for y. In
myTypes.m, for the 'scaled' case, T.y =
fi([],true,16,11,'DataType','ScaledDouble')

7 Rerun the test script.
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There are now no overflows.

Generate Code for the Proposed Fixed-Point Type

Update the data types table to use the proposed fixed-point type and generate code.

1 In myTypes.m, for the 'fixed' case, T.y = fi([],true,16,11)
2 Update the test script, mysum_test, to use T = mytypes('fixed');
3 Run the test script and then click the View Report link to view the generated C code.

short mysum(const short x[10])
{
  short y;
  int n;
  int i;
  int i1;
  int i2;
  int i3;
  y = 0;
  for (n = 0; n < 10; n++) {
    i = y << 4;
    i1 = x[n];
    if ((i & 1048576) != 0) {
      i2 = i | -1048576;
    } else {
      i2 = i & 1048575;
   }
   
    if ((i1 & 1048576) != 0) {
     i3 = i1 | -1048576;
    } else {
      i3 = i1 & 1048575;
    }

  i = i2 + i3;
  if ((i & 1048576) != 0) {
    i |= -1048576;
  } else {
    i &= 1048575;
  }

  i = (i + 8) >> 4;
  if (i > 32767) {
    i = 32767;
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  } else {
      if (i < -32768) {
        i = -32768;
      }
    }

   y = (short)i;
  }
  return y;
}

By default, fi arithmetic uses saturation on overflow and nearest rounding which
results in inefficient code.

Modify fimath Settings

To make the generated code more efficient, use fixed-point math (fimath) settings that
are more appropriate for C code generation: wrap on overflow and floor rounding.

1 In myTypes.m, add a 'fixed2' case:

 case 'fixed2'
      F = fimath('RoundingMethod', 'Floor', ...
           'OverflowAction', 'Wrap', ...
           'ProductMode', 'FullPrecision', ...
           'SumMode', 'KeepLSB', ...
           'SumWordLength', 32, ...
           'CastBeforeSum', true);
      T.x = fi([],true,16,15,F);
      T.y = fi([],true,16,11,F);

Tip Instead of manually entering fimath properties, you can use the MATLAB Editor
Insert fimath option. For more information, see “Building fimath Object
Constructors in a GUI”.

2 Update the test script to use 'fixed2', run the script, and then view the generated
C code.

short mysum(const short x[10])
{
 short y;
 int n;
 y = 0;
 for (n = 0; n < 10; n++) {
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   y = (short)(((y << 4) + x[n]) >> 4);
 }

  return y;
}

The generated code is more efficient, but y is shifted to align with x and loses 4 bits
of precision.

3 To fix this precision loss, update the word length of y to 32 bits and keep 15 bits of
precision to align with x.

In myTypes.m, add a 'fixed32' case:

 case 'fixed32'
      F = fimath('RoundingMethod', 'Floor', ...
           'OverflowAction', 'Wrap', ...
           'ProductMode', 'FullPrecision', ...
           'SumMode', 'KeepLSB', ...
           'SumWordLength', 32, ...
           'CastBeforeSum', true);
      T.x = fi([],true,16,15,F);
      T.y = fi([],true,32,15,F);

4 Update the test script to use 'fixed32' and run the script to generate code again.

Now, the generated code is very efficient.

int mysum(const short x[10])
{
  int y;
  int n;
  y = 0;
  for (n = 0; n < 10; n++) {
    y += x[n];
  }
 
  return y;
}

For more information, see “Optimize Your Algorithm”.
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About Fixed-Point

• “Fixed-Point Designer Product Description” on page 2-2
• “Benefits of Using Fixed-Point Hardware” on page 2-3
• “View Fixed-Point Data” on page 2-4
• “Precision and Range” on page 2-7
• “Scaling” on page 2-12
• “Fixed-Point Arithmetic” on page 2-13
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Fixed-Point Designer Product Description
Model and optimize fixed-point and floating-point algorithms

Fixed-Point Designer provides data types and tools for developing fixed-point and single-
precision algorithms to optimize performance on embedded hardware. Fixed-Point
Designer analyzes your design and proposes data types and attributes such as word
length and scaling. You can specify detailed data attributes such as rounding mode and
overflow action, and mix single-precision and fixed-point data. You can perform bit-true
simulations to observe the impact of limited range and precision without implementing
the design on hardware.

Fixed-Point Designer lets you convert double-precision algorithms to single precision or
fixed point. You can create and optimize data types that meet numerical accuracy
requirements and target hardware constraints. You can determine the range
requirements of your design via mathematical analysis or instrumented simulation. Fixed-
Point Designer provides apps and tools that guide you through the data conversion
process and enable you to compare fixed-point results with floating-point baselines.

Fixed-Point Designer supports C, HDL, and PLC code generation.

Key Features
• Fixed-point data type specification in MATLAB, Simulink, and Stateflow®

• Bit-true simulation of fixed-point and single-precision algorithms
• Histograms and related tools for exploring and optimizing data types
• Apps for converting from doubles to fixed point or single precision
• Instrumentation for collecting simulation min and max values
• Range analysis for assessing full design min and max values
• Overflow detection and precision loss tools for debugging and visualization
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Benefits of Using Fixed-Point Hardware
Digital hardware is becoming the primary means by which control systems and signal
processing filters are implemented. Digital hardware can be classified as either off-the-
shelf hardware (for example, microcontrollers, microprocessors, general-purpose
processors, and digital signal processors) or custom hardware. Within these two types of
hardware, there are many architecture designs. These designs range from systems with a
single instruction, single data stream processing unit to systems with multiple instruction,
multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or floating-point
data types. For both these data types, word sizes are fixed at a set number of bits.
However, the dynamic range of fixed-point values is much less than floating-point values
with equivalent word sizes. Therefore, in order to avoid overflow or unreasonable
quantization errors, fixed-point values must be scaled. Since floating-point processors can
greatly simplify the real-time implementation of a control law or digital filter, and floating-
point numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point hardware are much
less complicated than those of floating-point hardware. This means that the fixed-point
chip size is smaller with less power consumption when compared with floating-point
hardware. For example, consider a portable telephone where one of the product
design goals is to make it as portable (small and light) as possible. If one of today's
high-end floating-point, general-purpose processors is used, a large heat sink and
battery would also be needed, resulting in a costly, large, and heavy portable phone.

• Memory Usage and Speed — In general fixed-point calculations require less memory
and less processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is an important
consideration. When digital hardware is used in a product, especially mass-produced
products, fixed-point hardware costs much less than floating-point hardware and can
result in significant savings.

After making the decision to use fixed-point hardware, the next step is to choose a method
for implementing the dynamic system (for example, control system or digital filter).
Floating-point software emulation libraries are generally ruled out because of timing or
memory size constraints. Therefore, you are left with fixed-point math where binary
integer values are scaled.
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View Fixed-Point Data
In Fixed-Point Designer software, the fipref object determines the display properties of
fi objects. Code examples generally show fi objects as they appear with the following
fipref object properties:

• NumberDisplay — 'RealWorldValue'
• NumericTypeDisplay — 'full'
• FimathDisplay — 'full'

Setting 'FimathDisplay' to 'full' provides a quick and easy way to differentiate
between fi objects with a local fimath and those that are associated with the default
fimath. When 'FimathDisplay' is set to 'full', MATLAB displays fimath object
properties for fi objects with a local fimath. MATLAB never displays fimath object
properties for fi objects that are associated with the default fimath. Because of this
display difference, you can tell when a fi object is associated with the default fimath just
by looking at the output.

Additionally, unless otherwise specified, examples throughout the Fixed-Point Designer
documentation use the following default configuration of fimath:

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

For more information on display settings, refer to “fi Object Display Preferences Using
fipref”.

Displaying the fimath Properties of fi Objects
To see the output as it appears in most Fixed-Point Designer code examples, set your
fipref properties as follows and create two fi objects:

p = fipref('NumberDisplay', 'RealWorldValue',... 
'NumericTypeDisplay', 'full', 'FimathDisplay', 'full');
a = fi(pi,'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')
b = fi(pi)

MATLAB returns the following:
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a =
    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

b =
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

MATLAB displays fimath object properties in the output of fi object a because a has a
local fimath.

MATLAB does not display any fimath object properties in the output of fi object b
because b associates itself with the default fimath.

Hiding the fimath Properties of fi Objects
If you are working with multiple fi objects that have local fimaths, you may want to turn
off the fimath object display:

• NumberDisplay — 'RealWorldValue'
• NumericTypeDisplay — 'full'
• FimathDisplay — 'none'

For example,

p = fipref('NumberDisplay','RealWorldValue',... 
'NumericTypeDisplay','full','FimathDisplay','none')
 
p =
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         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'none'
           LoggingMode: 'Off'
      DataTypeOverride: 'ForceOff'

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = fi(pi, F)
 
a =
    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

Although this setting helps decrease the amount of output produced, it also makes it
impossible to tell from the output whether a fi object uses the default fimath. To do so,
you can use the isfimathlocal function. For example,

isfimathlocal(a)

ans =
     1

When the isfimathlocal function returns 1, the fi object has a local fimath. If the
function returns 0, the fi object uses the default fimath.

Shortening the numerictype Display of fi Objects
To reduce the amount of output even further, you can set the NumericTypeDisplay to
'short'. For example,

p = fipref('NumberDisplay','RealWorldValue',... 
'NumericTypeDisplay','short','FimathDisplay','full');

a = fi(pi)

a =
    3.1416
      s16,13
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Precision and Range

In this section...
“Range” on page 2-7
“Precision” on page 2-8

Note You must pay attention to the precision and range of the fixed-point data types and
scalings you choose in order to know whether rounding methods will be invoked or if
overflows or underflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling can represent.
The range of representable numbers for a two's complement fixed-point number of word
length wl, scaling S and bias B is illustrated below:

B
..

negative numbers positive numbers

S B
wl( )+2

1
S B

wl( )+2 1
1

For both signed and unsigned fixed-point numbers of any data type, the number of
different bit patterns is 2wl.

For example, in two's complement, negative numbers must be represented as well as
zero, so the maximum value is 2wl -1 – 1. Because there is only one representation for zero,
there are an unequal number of positive and negative numbers. This means there is a
representation for −2wl− 1 but not for 2wl− 1:

0

negative numbers positive numbers

For slope = 1 and bias = 0:

2
1wl

2 1
1wl
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Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows and
underflows can occur if the result of an operation is larger or smaller than the numbers in
that range.

Fixed-Point Designer software allows you to either saturate or wrap overflows. Saturation
represents positive overflows as the largest positive number in the range being used, and
negative overflows as the largest negative number in the range being used. Wrapping
uses modulo arithmetic to cast an overflow back into the representable range of the data
type.

When you create a fi object, any overflows are saturated. The OverflowAction
property of the default fimath is saturate. You can log overflows and underflows by
setting the LoggingMode property of the fipref object to on. Refer to “LoggingMode”
for more information.

Precision
The precision of a fixed-point number is the difference between successive values
representable by its data type and scaling, which is equal to the value of its least
significant bit. The value of the least significant bit, and therefore the precision of the
number, is determined by the number of fractional bits. A fixed-point value can be
represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point
has a precision of 2-4 or 0.0625, which is the value of its least significant bit. Any number
within the range of this data type and scaling can be represented to within (2-4)/2 or
0.03125, which is half the precision. This is an example of representing a number with
finite precision.

Rounding Methods

When you represent numbers with finite precision, not every number in the available
range can be represented exactly. If a number cannot be represented exactly by the
specified data type and scaling, a rounding method is used to cast the value to a
representable number. Although precision is always lost in the rounding operation, the
cost of the operation and the amount of bias that is introduced depends on the rounding
method itself. To provide you with greater flexibility in the trade-off between cost and
bias, Fixed-Point Designer software currently supports the following rounding methods:
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• Ceiling rounds to the closest representable number in the direction of positive
infinity.

• Convergent rounds to the closest representable number. In the case of a tie,
convergent rounds to the nearest even number. This is the least biased rounding
method provided by the toolbox.

• Zero rounds to the closest representable number in the direction of zero.
• Floor, which is equivalent to two's complement truncation, rounds to the closest

representable number in the direction of negative infinity.
• Nearest rounds to the closest representable number. In the case of a tie, nearest

rounds to the closest representable number in the direction of positive infinity. This
rounding method is the default for fi object creation and fi arithmetic.

• Round rounds to the closest representable number. In the case of a tie, the round
method rounds:

• Positive numbers to the closest representable number in the direction of positive
infinity.

• Negative numbers to the closest representable number in the direction of negative
infinity.

Choosing a Rounding Method

Each rounding method has a set of inherent properties. Depending on the requirements
of your design, these properties could make the rounding method more or less desirable
to you. By knowing the requirements of your design and understanding the properties of
each rounding method, you can determine which is the best fit for your needs. The most
important properties to consider are:

• Cost — Independent of the hardware being used, how much processing expense does
the rounding method require?

• Low — The method requires few processing cycles.
• Moderate — The method requires a moderate number of processing cycles.
• High — The method requires more processing cycles.

Note The cost estimates provided here are hardware independent. Some processors
have rounding modes built-in, so consider carefully the hardware you are using before
calculating the true cost of each rounding mode.
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• Bias — What is the expected value of the rounded values minus the original values:
Ε θ − θ ?

• Ε θ − θ < 0 — The rounding method introduces a negative bias.

• Ε θ − θ = 0 — The rounding method is unbiased.

• Ε θ − θ > 0 — The rounding method introduces a positive bias.

• Possibility of Overflow — Does the rounding method introduce the possibility of
overflow?

• Yes — The rounded values may exceed the minimum or maximum representable
value.

• No — The rounded values will never exceed the minimum or maximum
representable value.

The following table shows a comparison of the different rounding methods available in the
Fixed-Point Designer product.

Fixed-Point Designer
Rounding Mode

Cost Bias Possibility of
Overflow

Ceiling Low Large positive Yes
Convergent High Unbiased Yes
Zero Low • Large positive for negative

samples
• Unbiased for samples with

evenly distributed positive
and negative values

• Large negative for positive
samples

No

Floor Low Large negative No
Nearest Moderate Small positive Yes
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Fixed-Point Designer
Rounding Mode

Cost Bias Possibility of
Overflow

Round High • Small negative for negative
samples

• Unbiased for samples with
evenly distributed positive
and negative values

• Small positive for positive
samples

Yes

Simplest
(Simulink only)

Low Depends on the operation No
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Scaling
Fixed-point numbers can be encoded according to the scheme

real‐world value = slope×integer + bias

where the slope can be expressed as

slope = slope adjustment factor  ×  2fixed exponent

The integer is sometimes called the stored integer. This is the raw binary number, in
which the binary point assumed to be at the far right of the word. In Fixed-Point Designer
documentation, the negative of the fixed exponent is often referred to as the fraction
length.

The slope and bias together represent the scaling of the fixed-point number. In a number
with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled
by binary point position is equivalent to a number in [Slope Bias] representation that has
a bias equal to zero and a slope adjustment factor equal to one. This is referred to as
binary point-only scaling or power-of-two scaling:

real‐world value = 2fixed exponent × integer

or

real‐world value = 2‐fraction length × integer

Fixed-Point Designer software supports both binary point-only scaling and [Slope Bias]
scaling.
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Fixed-Point Arithmetic

In this section...
“Addition and Subtraction” on page 2-13
“Multiplication” on page 2-14
“Modulo Arithmetic” on page 2-20
“Two's Complement” on page 2-20
“Casts” on page 2-21

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the addends be
aligned. The addition is then performed using binary arithmetic so that no number other
than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1
+0110.110

011001.010

(18.5)
(6.75)
(25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value
for any negative values. In subtraction, the addends must be sign-extended to match each
other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010.100
−0110.110

(18.5)
(6.75)

The default global fimath has a value of 1 (true) for the CastBeforeSum property. This
casts addends to the sum data type before addition. Therefore, no further shifting is
necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full precision
maintained. After the addition the sum is then quantized.
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Multiplication
The multiplication of two's complement fixed-point numbers is directly analogous to
regular decimal multiplication, with the exception that the intermediate results must be
sign-extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication using
Fixed-Point Designer software. The diagrams illustrate the differences between the data
types used for real-real, complex-real, and complex-complex multiplication.

Real-Real Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of
two real numbers. The software returns the output of this operation in the product data
type, which is governed by the fimath object ProductMode property.

2 About Fixed-Point

2-14



Real-Complex Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of a
real and a complex fixed-point number. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product data type,
which is governed by the fimath object ProductMode property:

Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers. Note
that the software returns the output of this operation in the sum data type, which is
governed by the fimath object SumMode property. The intermediate product data type is
determined by the fimath object ProductMode property.
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When the fimath object CastBeforeSum property is true, the casts to the sum data
type are present after the multipliers in the preceding diagram. In C code, this is
equivalent to

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum property is
false, the casts are not present, and the data remains in the product data type before
the subtraction and addition operations.
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Multiplication with fimath

In the following examples, let

F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision');
T1 = numerictype('WordLength',24,'FractionLength',20);
T2 = numerictype('WordLength',16,'FractionLength',10);

Real*Real

Notice that the word length and fraction length of the result z are equal to the sum of the
word lengths and fraction lengths, respectively, of the multiplicands. This is because the
fimath SumMode and ProductMode properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F) 

x =
 
     5

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 20

y = fi(10, T2, F) 

y =
 
    10

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10

z = x*y 

z =
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    50

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 30

Real*Complex

Notice that the word length and fraction length of the result z are equal to the sum of the
word lengths and fraction lengths, respectively, of the multiplicands. This is because the
fimath SumMode and ProductMode properties are set to FullPrecision:

x = fi(5,T1,F) 

x =
 
     5

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 20
 
y = fi(10+2i,T2,F) 

y =
 
  10.0000 + 2.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10
 
z = x*y 

z =
 
  50.0000 +10.0000i
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          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 30

Complex*Complex

Complex-complex multiplication involves an addition as well as multiplication, so the word
length of the full-precision result has one more bit than the sum of the word lengths of the
multiplicands:

x = fi(5+6i,T1,F) 

x =
 
   5.0000 + 6.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 20
 
y = fi(10+2i,T2,F) 

y =
 
  10.0000 + 2.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10
 
z = x*y 

z =
 
  38.0000 +70.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
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            WordLength: 41
        FractionLength: 30

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of
numbers, wrapping the results of any calculations that fall outside the given set back into
the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this
system can only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This
can be more easily visualized as a number circle:

12
1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11

9 ... ... plus 9 more ...

... equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that
fall outside this range are wrapped “around the circle” to either 0 or 1.

Two's Complement
Two's complement is a way to interpret a binary number. In two's complement, positive
numbers always start with a 0 and negative numbers always start with a 1. If the leading
bit of a two's complement number is 0, the value is obtained by calculating the standard
binary value of the number. If the leading bit of a two's complement number is 1, the
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value is obtained by assuming that the leftmost bit is negative, and then calculating the
binary value of the number. For example,

01 = (0 + 20) = 1

11 = −21 + 20 = (− 2 + 1) = − 1

To compute the negative of a binary number using two's complement,

1 Take the one's complement, or “flip the bits.”
2 Add a 2^(-FL) using binary math, where FL is the fraction length.
3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one's complement
of the number, or flip the bits:

11010 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1

00110 (6)

Casts
The fimath object allows you to specify the data type and scaling of intermediate sums
and products with the SumMode and ProductMode properties. It is important to keep in
mind the ramifications of each cast when you set the SumMode and ProductMode
properties. Depending upon the data types you select, overflow and/or rounding might
occur. The following two examples show cases where overflow and rounding can occur.

Note For more examples of casting, see “Cast fi Objects”.

Casting from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a 4-bit data type with two
fractional bits, to an 8-bit data type with seven fractional bits:
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This bit from the source data
type �falls off� the high end with
the shift up. Overflow might occur.
The result will saturate or wrap.

These bits of the destination
data type are padded with
0�s or 1�s.

source

destination

The source bits must be shifted up to match the
binary point position of the destination data type.

As the diagram shows, the source bits are shifted up so that the binary point matches the
destination binary point position. The highest source bit does not fit, so overflow might
occur and the result can saturate or wrap. The empty bits at the low end of the
destination data type are padded with either 0's or 1's:

• If overflow does not occur, the empty bits are padded with 0's.
• If wrapping occurs, the empty bits are padded with 0's.
• If saturation occurs,

• The empty bits of a positive number are padded with 1's.
• The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow
can still occur. This can happen when the integer length of the source data type (in this
case two) is longer than the integer length of the destination data type (in this case one).
Similarly, rounding might be necessary even when casting from a shorter data type to a
longer data type, if the destination data type and scaling has fewer fractional bits than the
source.

Casting from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an 8-bit data type with seven
fractional bits, to a 4-bit data type with two fractional bits:
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There is no value for this bit
from the source, so the result
must be sign-extended to fill
the destination data type.

These bits from the source
do not fit into the destination
data type. The result is rounded.

source

destination

The source bits must be shifted down to match the
binary point position of the destination data type.

As the diagram shows, the source bits are shifted down so that the binary point matches
the destination binary point position. There is no value for the highest bit from the source,
so sign extension is used to fill the integer portion of the destination data type. The
bottom five bits of the source do not fit into the fraction length of the destination.
Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the
integer bits are maintained. Conversely, full precision can be maintained even if you cast
to a shorter data type, as long as the fraction length of the destination data type is the
same length or longer than the fraction length of the source data type. In that case,
however, bits are lost from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of the
destination data type are shorter than those of the source data type and scaling. In that
case, both overflow and a loss of precision can occur.
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